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Interaction event network modeling based on temporal point process

Hang Dong and Kaibo Wang

Department of Industrial Engineering, Tsinghua University, Beijing, China

ABSTRACT
Interaction event networks, which consist of interaction events among a set of individuals, exist in
many areas from social, biological to financial applications. The individuals on networks interact
with each other for several possible reasons, such as periodic contact or reply to former interac-
tions. Regarding these interaction events as expectations based on previous interactions is crucial
for understanding the underlying network and the corresponding dynamics. Usually, any change
on individuals of the network will reflect on the pattern of their interaction events. However, the
causes and expressed patterns for interaction events on networks have not been properly consid-
ered in network models. This article proposes a dynamic model for interaction event networks
based on the temporal point process, which aims to incorporate the impact from historical inter-
action events on later interaction events considering both network structure and node connec-
tions. A network representation learning method is developed to learn the interaction event
processes. The proposed interaction event network model also provides a convenient representa-
tion of the rate of interaction events for any pair of sender–receiver nodes on the network and
therefore facilitates monitoring such event networks by summarizing these pairwise rates. Both
simulation experiments and experiments on real-world data validate the effectiveness of the pro-
posed model and the corresponding network representation learning algorithm.
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1. Introduction

Network data widely exist nowadays, examples include bio-
logical networks, financial networks, and academic networks.
The most commonly seen example is social networks. On
such networks, individuals interact with each other through
interaction events, such as mention, comment, sending mes-
sages, or forwarding content to others. These interaction
events are often collected and recorded for a number of social
networks, which we refer to as interaction event networks
(Lerner et al., 2013). To fully understand the dynamics of
these networks, it is crucial to incorporate the triggering moti-
vations for these interaction events into the network model.
In reality, these interaction events can be motivated by a num-
ber of different reasons, such as periodic contact or reply to a
former interaction event. However, in previous studies these
dynamic interactions are mostly aggregated as simple edges
over nodes of individuals on networks (Newman et al., 2002).
Such a simplification operation completely ignores the rich
information in the occurring orders, the time intervals
between related events, as well as the motivation for each
interaction event. It is therefore important to develop meth-
ods to characterize the occurring process without losing these
types of information for interaction events in network models.

Figure 1 shows an example of an interaction event network:
an email network inside an organization, with corresponding
email records in Table 1. In this example, seven individuals

from A to G send emails on the network at several time stamps
from t1 to t6. Each email records the sender, receiver, and the
sent time of the email. In such a network, routine information
of the organization usually spread over through fixed sub-net-
works, and therefore these interaction events can closely reflect
the running status of the underlying organization.

Intuitively, for a specific sender, the interaction event of
sending an email is probably caused by a previously received
email. For example, in Figure 1, the email sent from A to F
at time t6 is probably a reply to the email A received from F
at time t4. Moreover, the behavior of sending an email can
also be a custom, such as the emails sent from B to E at
time t1 and t3 in Figure 1. The above observations indicate
that considering the influence of related historical inter-
action events on each new interaction event is desirable for
modeling interaction event networks.

To effectively incorporate the influence from historical
interaction events on later ones and understand the dynam-
ics on networks, we propose a temporal point process net-
work model for interaction event networks, which explicitly
models the rate of interaction events on the network with
the information from related historical events and related
nodes. A temporal point process describes how a series of
events happen, and therefore is used in this work to model
the rate of interaction events between a sender–receiver pair
of nodes on the network. We also inherit the assumption of
latent space network models (Hoff et al., 2002) that each
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node on the network can be projected into a latent space
where the node information can be well preserved as the
position in that latent space. To learn the model parameters
and the node representation vectors (latent positions) of the
network, we propose a network representation learning algo-
rithm that is effective and efficient for the task. On one
hand, the proposed model can effectively preserve the struc-
tural information of the network by node representation
vectors; on the other hand, the event dynamics on the net-
work can be well explained by the pairwise rate of inter-
action events over all the node pairs on the network. The
proposed model also facilitates the network monitoring task
by providing the rate of interaction events between each
possible sender–receiver node pair. Simulation experiments
and experiments on real-world data show that the proposed
model can well characterize the influence from past events
on later ones, and the proposed network representation
learning algorithm can preserve sufficient node information
for downstream tasks.

The remainder of this article is organized as follows.
Section 2 reviews research works in related fields, including
temporal point process models, network representation
learning, and network monitoring. In Section 3, we intro-
duce the Temporal Point Process Network (TPPN) model

which incorporates the pairwise rate of sender–receiver node
interaction events into a latent space network model.
Section 4 describes the network representation learning algo-
rithm for learning the node representation vectors on such
networks. In Section 5, both simulation experiments and
experiments on real-world datasets validate the effectiveness
of the proposed model and its corresponding learning algo-
rithm. Finally, we conclude this work and propose future
research directions in Section 6.

2. Literature review

Numerous works have been done in related fields, including
in temporal point process models, network representation
learning, and network monitoring. In this section, we review
relevant works in the above fields and point out opportuni-
ties for this research to contribute.

2.1. Temporal point process models

A temporal point process is a stochastic process that charac-
terizes the rate of events occurring along the timeline. The
key component of such a process is the Conditional
Intensity Function (CIF) characterizing this rate for each
type of event. Due to the prevalence of such event data, the
temporal point process has a lot of applications in the real-
world for event sequence modeling (Daley and Vere-Jones,
2008). These events can be seismic events (Ogata and Vere-
Jones, 1984), purchase events (Embrechts et al., 2011),
device failures (Xiao et al., 2017), communication activities
(Lerner et al., 2013), and many others.

Based on the form of the CIF, the temporal point process
has different types, such as the homogeneous Poisson process,
the non-homogeneous Poisson process, and the Hawkes pro-
cess. Among them, the Hawkes process (Hawkes, 1971) is a
self-exciting point process, where historical events have a
positive exciting influence on later events. This characteristic
fits well in a lot of realistic scenarios in many different fields,
including financial trades, information systems, and social
networks. Therefore, numerous variants of the Hawkes pro-
cess have been proposed for different applications.

For example, a Hawkes process has been used in social
network modeling (Li and Zha, 2014), ATM failure predic-
tion (Xiao et al., 2017), information system analytics (Yan
et al., 2015) and patient flow prediction (Xu et al., 2017).
One key difference between the temporal point process and
traditional time series is that a temporal point process pre-
serves the specific times when each event happens, com-
pared with the underlying hypothesis of uniform sampling
in time for time series. By preserving the exact timestamp
when the event occurs, this kind of temporal point process
can well capture the time intervals between events in
the model.

Due to the prevalence of large online social networks, a
number of works have adopted temporal point process for
modeling event sequences on social networks (Farajtabar,
2018). For example, Perry and Wolfe (2013) proposed to use
a temporal point process to characterize the repetitive

Figure 1. Example of an interaction event network.

Table 1. Email network in Figure 1.

Sender Receiver Time

B A t1
B C t1
B E t1
D C t2
D E t2
B E t3
B F t3
B G t3
F A t4
F G t5
A G t6
…… …… ……
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directed interaction events on networks; Linderman and
Adams (2014) developed a probabilistic model combining
mutually-exciting point processes with random graph models;
Farajtabar et al. (2015) modeled the information diffusion pro-
cess as a multivariate Hawkes process and a network evolution
process as a combination of survival and Hawkes processes;
Hall and Willett (2016) proposed an online learning framework
of a multivariate Hawkes process model to track the network
structure of a social network as it evolves; Mei and Eisner
(2017) relaxed the positive influence assumption of the Hawkes
process, and constructed a neurally self-modulating multivari-
ate point process which can be learned through a continuous-
time long short-term memory neural network; Junuthula et al.
(2019) combined the stochastic block model with a Hawkes
process as a block point process to incorporate the community
structure in a social network. However, these works did not
adopt representation learning methods to incorporate network
structure information. Zuo et al. (2018) integrated the neigh-
borhood formulation process as a Hawkes process into net-
work embedding, so as to capture the influence of historical
neighbors on the current neighbors; Trivedi et al. (2019)
assumed that a latent mediation process bridges the topological
evolution and activities, and proposed a two-time-scale deep
temporal point process model to capture this characteristic.
Although these works tried to adopt temporal point processes
with representation learning on networks, they did not focus
on modeling and monitoring the triggering mechanism of
interaction events over the network. In our work, we explicitly
model this mechanism and mainly decompose it into the tran-
sitive influence and repeated pattern influence from histor-
ical events.

The works mentioned above are listed in Table 2 according
to the following characteristics: the network is static (assume
no unknown added nodes) or dynamic, the application area,
the underlying point process, and whether they used a neural
network to solve the model (we classify them as traditional if
not). In this article, we focus on a similar setting to that of
Zuo et al. (2018), but use a different temporal point process to
characterize the transitive and repeated pattern influence from
historical interaction events to later ones.

2.2. Network representation learning

Network representation learning has become popular in
recent decades, due to its powerful capability to efficiently

process large networks (Hamilton et al., 2017). From the
model perspective, network representation learning is based
on a latent space assumption, assuming each node has a
latent position in the latent space where the distance
between nodes in that space should correspond to the dis-
similarity of these nodes in the actual application scenario.

To analyze networks more effectively, appropriate repre-
sentation forms of networks are required. However, simply
using the adjacency matrix tends to neglect the complex and
high-order relationships on the network, such as paths and
frequent sub-structures. Network representation learning
helps to embed the network information into a latent space,
where traditional machine learning algorithms based on vec-
tors can be adopted conveniently for subsequent analyzing
tasks, such as node classification and link prediction.

Early network representation learning originated from
spectral clustering (Brand and Huang, 2003) and manifold
learning (Roweis and Saul, 2000; Tenenbaum et al., 2000),
conducting eigendecomposition on the adjacency matrix of
the network or preserving distances with neighbors to find a
low-dimensional representation of the network. Recently, by
virtue of the word2vec (Mikolov et al., 2013) and skip-gram
models in natural language processing, many methods such
as DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015)
and node2vec (Grover and Leskovec, 2016) have been pro-
posed to learn node representation from a static network
structure. As Qiu et al. (2018) and Liu et al. (2019) showed,
these methods, which are based on a static network struc-
ture, can be treated as a matrix decomposition task, which is
equivalent to optimizing two objectives: making embedded
vectors of similar nodes as close as possible in the latent
space and making embedded vectors of different nodes as
far as possible in the latent space. Based on the learned
node representation vectors, many tasks related to network
analytics can be conducted, including node classification
(Bhagat et al., 2011), link prediction (Liben-Nowell and
Kleinberg, 2007), clustering (Newman, 2006), visualization
(Van Der Maaten and Hinton, 2008), and so on.

There are still some significant challenges for network
representation learning, including preserving network struc-
ture and context information, dealing with data sparsity and
scalability to large-scale networks (Zhang et al., 2017).
Recently, more and more works have focused on network
representation learning from different perspectives, such as
heterogeneous network embedding (Chang et al., 2015),

Table 2 Related works on temporal point processes.

Work Network Application Process Solution

Yan et al. (2015) None Business Hawkes Traditional
Xiao et al. (2017) None ATM Events Time Series RNN RNN
Perry and Wolfe (2013) Static Email Network Cox Traditional
Xu et al. (2017) None Patient Flow Mutually-correcting Traditional
Lerner et al. (2013) Static Political Network ad-hoc Traditional
Li and Zha (2014) Static Social Network Hawkes Traditional
Farajtabar et al. (2015) Static Social Network ad-hoc Traditional
Linderman and Adams (2014) Static Financial & Criminal Hawkes Traditional
Junuthula et al. (2019) Static Social Network Hawkes Traditional
Zuo et al. (2018) Static Social Network ad-hoc NN
Hall and Willett (2016) Dynamic Blog Network Hawkes Traditional
Mei and Eisner (2017) Dynamic Blog & Social ad-hoc RNN
Trivedi et al. (2019) Dynamic Social Network ad-hoc NN

632 H. DONG AND K. WANG



network representation learning based on deep neural net-
works (Li et al., 2017), representation learning on directed
networks (Ou et al., 2016), and so on.

For dynamic networks, a stream of works based on con-
nectivity, spanning tree (Holme and Saramki, 2012), and
graph streams (McGregor, 2014) have been proposed.
Usually, dynamic network models create a series of static
network slices based on a fixed period (Kumar et al., 2006).
For example, Du et al. (2018) and Nguyen et al. (2018) learn
node embedding for dynamic networks, where time is only
used for identifying the order of edges, neglecting the spe-
cific time difference between two events. For more related
works on dynamic network representation learning, readers
can refer to Xie et al. (2020). In our work, we try to accom-
modate the specific time of events in the model and expli-
citly characterize the influence of historical events on later
events in the network.

2.3. Network monitoring

Network monitoring aims to monitor a network system and
raise an alarm once the network goes out of control. It is
also referred to as anomaly detection and treated as a
change-point problem (Antoch and Hu�skov�a, 1993). Savage
et al. (2014) reviewed anomaly detection works on online
social networks and classified these works by the target net-
work is static or dynamic, and whether there are node labels
in the network. Jeske et al. (2018) illustrated statistical tools
for network surveillance applications in the context of net-
work security, network reliability, and social networks.
Another review of social network monitoring by Woodall
et al. (2017) showed the relationships between network
monitoring and engineering statistics or public health
surveillance.

Generally, one stream of network monitoring methods is
based on community structure (Jun and Shun-zheng, 2009),
including monitoring based on variants of the stochastic
block model (Wilson et al., 2019; Dong et al., 2020). These
methods monitor the pairwise model parameters of different
communities to reflect the overall status of the network.
Another stream of methods monitors networks through rep-
resentative network metrics. For example, Priebe et al.
(2005) used scan statistics to detect anomaly events in email
networks. Cheng and Dickinson (2013) not only monitored
scan statistics, but also used cross-correlations between
scanned network metrics in the moving window to detect
changes on the network. Furthermore, traditional monitor-
ing methods in the field of statistical process control are
also used for network monitoring, conducting Exponentially
Weighted Moving Average (EWMA) or CUmulative SUM
(CUSUM) control chart based on network metrics such as
average betweenness and average closeness (Sparks and
Wilson, 2019). Neil et al. (2013) used a scan statistic for
both time windows and sub-graphs to detect anomalous
sub-graphs in computer networks. Azarnoush et al. (2016)
proposed a network monitoring method based on the likeli-
hood function combining the existence of edges with node
attributes. However, these methods do not explicitly

consider the dynamics of events on the network in the mon-
itoring scheme.

For monitoring dynamic networks, there have been sev-
eral works (Noorossana et al., 2018). For example, Bian
et al. (2019) proposed to directly model changes between
two consecutive static networks by capturing the topological
difference of the network. However, current works are
mostly conducted on a number of static network snapshots
and neglect the time interval information between events.

There is still a great need for effective models and moni-
toring methods on networks incorporating the dynamics of
interaction events, especially explainable motivations for
these interaction events. In the following section, we will
introduce a network event model that can well characterize
the continuous dynamics of interaction events on the net-
work, with an effective network representation learning
method that can learn the structural information as well as
the dynamics of interaction events on the network.

3. Network event model based on temporal
point process

To effectively characterize the dynamics of interaction event
networks, we propose a model for events on networks based
on the temporal point process. The major contributions of
this work are as follows: first, we develop a network model
incorporating the influence of historical events on later
events for interaction event networks, which is largely
ignored in previous works; second, the proposed model can
be easily learned with the proposed network representation
learning technique, which also provides convenient repre-
sentations of nodes preserving structural information of the
whole network and can perform well for classic network
tasks such as node classification and link prediction; last,
but not least, the proposed model can well restore the rate
of all the possible events on the network and thus facilitate
monitoring for such interaction event networks.

Figure 1 shows an example of an interaction event net-
work. In Figure 1, each node can be treated as an email
account in an email network, and each edge is an event
sending an email from a sender to a receiver, with the spe-
cific sending time recorded. The emails sent at time tk and
tkþ1 are shown in red arrows. Assume that we are concerned
about the email-sending behavior of accounts F to A, B to
E, and B to F, it is convenient to express the rate of the
sending behavior of these pairs along the timeline in a func-
tional curve as is shown in Figure 1. This is the main motiv-
ation of the proposed model. From the perspective of
formulating the event rate, it is straightforward to consider
the effective influence of historical events on later events. In
the above email case, as well as in other communication or
purchase applications, each individual’s interaction behavior
is highly dependent on the others around in the network,
thus the rate of interaction events should also be influenced
by past events related to the current individual’s network
structure. Our work is based on this intuition and uses a
temporal point process to characterize the influence of past
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events. Parameters of this temporal point process are learned
by network representation learning.

For a given series of interaction events H ¼
ðsi , ri , tiÞi¼1, 2, :::, we aim to model the dynamics of these
interaction events by explicitly expressing the rate of events
through temporal point processes. A one-dimensional tem-
poral point process is a random measure that maps each
Borel set on R

þ into a positive integer. Intuitively, we use
Nfða, bÞg to represent the number of points (events) during
the time period (a, b), where N(t) is a counting process.

The above one-dimensional case is easily extended to a
multi-dimensional case. Specifically, a multivariate temporal
process can be represented by several counting processes
N ¼ fNcðtÞgc2C, where NcðtÞ is the number of type-c events
that happen until time t. For each process NcðtÞ, we note
the immediate occurrence rate as kcðtÞ, which is the CIF:

kcðtÞ ¼
E dNcðtÞjHt½ �

dt
, Ht ¼ fðti, ciÞjti < t, ci 2 Cg, (1)

where Ht represents all the historical observations before
time t. Under rather mild conditions, a temporal point pro-
cess can be uniquely determined by a specific CIF.

For the interaction events on a network, we record the
event history as a triplet H ¼ fðsk, rk, tkÞg, where sk and rk
represent the sender and receiver of the event k, and tk is
the time of the event. In our proposed model, CIF of the
temporal point process from one node u to another node v
on the network is:

kuvðtÞ :¼ g

 
luv þ

XK
k¼1

½Irk¼u f1ðhsk , hu, t � tkÞ
� �

þ Isk¼u, rk¼v f2ðhu, hv, t � tkÞ
� �

�
! (2)

where luv represents the base rate term, I is the indicator
function and only when the content meets the condition
does this term become equal to one and otherwise zero; h�
is a D-dimensional representative vector of the specific node
in the latent space. Assume that there are K interaction
events up to time t, and for each event k, it has the sender

sk, receiver rk. f1, f2 are mapping functions of R
D � R

D �
R ! R, and g is an R ! R function.

The first term in the summation part in (2) represents
the influence from all the historical events when node u has
appeared as a receiver on the current u-to-v event. In the
example shown in Figure 2, to evaluate the conditional
intensity of u-to-v event at time t3, then the first term in (2)
represents the influence from the past two events at t0 and
t2 when node u was a receiver node.

The second term in the summation part in (2) represents
the influence from all the historical events that have the
same pattern, i.e., have the same sender node and receiver
node as the current sender–receiver pair. In Figure 2, this
term corresponds to the influence of the event occurred at
time t1 which is also an event from u to v.

By decomposing the CIF into external transitional influ-
ence and repeated pattern influence (corresponding to the
first term and second term described above), this CIF is able
to characterize the event occurrence process of interactions
between all the node pairs on the network.

More details of the model form in (2) are as follows. The
base rate term luv shows the affinity between the sender
node and the receiver node in the latent space, so we use a
negative squared Euclidean distance in this base rate term:

luv ¼ �khu � hvk2, (3)

where hu and hv represent the representation vector of node
u and node v in the latent space, respectively. This base rate
term will be transformed into base rate through function g.
Functions f1, f2 and g are:

f1ðhsk ,hu, t � tkÞ ¼ f2ðhsk , hu, t � tkÞ ¼ ask , ujðt � tkÞ, (4)

gð�Þ ¼ exp ð�Þ: (5)

And jðt � tkÞ is the influence from past events on the cur-
rent time which decays with time:

jðt � tkÞ ¼ exp ð�dskðt � tkÞÞ, (6)

where dsk is a decay parameter that depends on the sender
node, indicating that in each historical interaction event, dif-
ferent sender nodes have a different influence on later
events. ask , u is a coefficient that depends on the distance
between the sender and receiver in historical events, so we
also adopt the negative squared Euclidean distance as the
metric:

ask , u ¼ �khsk � huk2: (7)

For all the historical events until time T, we can thus cal-
culate the CIF for any sender–receiver node pair at any time
0 � t � T using (2). In this way, all the interaction events
on the whole network are incorporated in this model. In the
next section, the network representation learning method
using historical events on the network to learn the model
parameters will be introduced.

4. Model inference and event network monitoring

In our proposed model, the key parameters that need to be
estimated include fhi, i ¼ 1, :::,Ng and fdi, i ¼ 1, :::,Ng: In

Figure 2. Illustration of the CIF of u-to-v event at time t3.
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this section, we introduce a network representation learning
method to infer these parameters.

For a specific sender of an event u, the probability that
the receiver of the event is v is:

Pðvju,HðtÞÞ ¼ kuvP
v0 kuv0 ðtÞ

: (8)

Based on (2), we can obtain the CIF of all the observations
of interaction events on the network up to time T, and the
log likelihood function of these events is:

logL ¼
X
u2V

X
v2HðT Þ

logP vju,HðTÞð Þ: (9)

To learn high-quality vector representations of nodes on the
network, we adopt the negative sampling method to
approximately optimize the log-likelihood function (Mikolov
et al., 2013). Negative sampling can help to avoid the huge
number of calculations created by summing over all nodes
in (9). In this setting, the objective function corresponds to
a sender node u and a receiver node v can be calculated as:

log rð~kuvðtÞÞ þ
XM
m¼1

Euk�PnðuÞ � log rð~kukvÞðtÞ
h i

, (10)

where ~k ¼ g�1ðkÞ is the CIF before the final transformation;
M is the number of negative samples for node v, which is

set to follow a distribution PnðuÞ, such as PnðuÞ � dðuÞ3=4
where d(u) is the degree of node u. rðxÞ is the sigmoid
function:

rðxÞ ¼ 1=ð1þ exp ð�xÞÞ: (11)

Additionally, the number of historical events considered in
the calculation will have an impact on the computation load
of the CIF kuvðtÞ, and the impact from far early historical
events is so trivial that it can be neglected. Therefore, in the
model inference procedure, the maximum number of related
historical events h is fixed, which means we only preserve
the most recent h valid related historical events in the opti-
mization of the objective function.

Classic optimization strategies can be easily adapted to
optimize the objective function in (10), such as Stochastic
Gradient Descent (SGD) and Adam (Kingma and Ba,
2014). Without loss of generality, we use the classic SGD
optimizer, which can also be replaced by other off-the-
shelf optimizers. The complete algorithm is shown in
Algorithm 1.

Algorithm 1. TTPN Algorithm

Require: Network G ¼ ðV ,EÞ; Set of events H; Sampling
size w; Fixed length of historical events h;
Ensure: Node representations H ¼ fhvgv2V , node attribute
fdvgv2V ;
1: Initialization: Let t¼ 0; Randomly initialize H ad

d ¼ ½d1, :::, dN �;
2: for i¼ 1,… ,w do
3: Sample in H and obtain node u, node v, time t and

related event history Huv;

4: Generate number of negative samples according to
PnðuÞ and conduct negative sampling;

5: Calculate the value of the objective function according
to (10);

6: end for
7: for b¼ 1,2,,B do
8: Conduct SGD to optimize the objective function;
9: end for
10: if SGD result does not converge then
11: Back to step 7;
12: else
13: return H ¼ fhvgv2V and fdvgv2V ;
14: end if

Based on the network representation learning results, we
can establish the CIF between each sender–receiver node
pair on the network:

kuvðtÞ, u, v ¼ 1, :::,N, u 6¼ v: (12)

Given all the conditional intensity over the network, we
can monitor either some specific local structures or the
whole network. As a demonstration of model usage, we
introduce two straight-forward methods for global monitor-
ing of the whole network. In these methods, the summation
and the maximum value for all the sender–receiver node
pairs on the network are monitored separately:

s1ðtÞ ¼
XN
u¼1

XN
v¼1

kuvðtÞ, u 6¼ v, (13)

s2ðtÞ ¼ max
u, v

kuvðtÞ, u 6¼ v (14)

The above two types of monitoring strategies emphasize dif-
ferent aspects of the network: the summation method tends
to characterize the overall status of the network, whereas the
maximum value emphasizes more on the event intensity on
active nodes. We will demonstrate this difference through
extensive experiments.

5. Experiments

5.1. Simulation experiments

In simulation experiments, we generate interaction events
over a network based on our proposed model form and
make inferences on model parameters based on our pro-
posed network representation learning algorithm. We aim to
serve the following two purposes in this experiment: First,
we check the effectiveness of the estimated CIF by predict-
ing the sender or receiver for the next event; second, we
evaluate the accuracy of estimated CIFs by comparing the
estimated values with true values.

The hardware environment for the experiments in this
work is an Azure NC6 instance virtual machine, with a CPU
of Intel Xeon E5-2690v3, 2.60GHz, and 56GB memory of eight
cores. The generation process of the simulated interaction
events on the network is described in Algorithm 2. We gener-
ate events and train the model with the first 90% of data, and
test the performance of the model with the remaining 10%.
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Algorithm 2. TTPN Simulation Algorithm

Require: Number of nodes N; Dimension of representation
vectors d; Number of events E; Start time t0; Number of com-
munities K with centroids ck 2 R

d, k ¼ 1, ::,K; Deviation
inside community �;
Ensure: A series of interaction events on the network, each
event includes a sender s, a receiver r and the time t;
1: Initialization: For each node in each community k, start-
ing with the community centroid, set the node representa-
tion to be a vector deviated from the last node by �;
2: for i, j ¼ 1, :::,N, i 6¼ j do
3: According to the thinning algorithm (Ogata, 1981),

generate the proposed time sij for the first event
between each node pair;

4: end for
5: for k ¼ 1,2,… ,E do
6: Let ðsk, rkÞ ¼ argminfsijg, tk ¼ minfsijg;
7: Append ðsk, rk, tkÞ to the network event sequence;
8: Update related proposed time for next event sskrk and

srkj, where j ¼ 1, :::,N, j 6¼ rk;
9: end for
10: return fðs1, r1, t1Þ, ðs2, r2, t2Þ, :::, ðsE, rE, tEÞg

5.1.1. Next event prediction
A direct application of the learned CIF is to predict the next
interaction event for a specific node, including predict
the receiver of the next event when the specific node is the
sender, and predict the sender of the next event when the
specific node is the receiver. These two tasks are also useful
in real-world applications, such as predict to whom a spe-
cific user will next send an email.

For a specific node i as a sender in the network, the pre-
diction of the next receiver is

argmax
j6¼i

Pðjji,HðtÞÞ: (15)

Combining with (8), this prediction is

argmax
j 6¼i

Pðjji,HðtÞÞ ¼ argmax
j6¼i

kijðtÞ, (16)

Similarly, we can predict the sender of the next sender for a
specific node as receiver:

argmax
j 6¼i

Pðjji,HðtÞÞ ¼ argmax
j 6¼i

kjiðtÞ: (17)

With the simulation method described in Algorithm 2, we
simulate 20,000 interaction events on a network of 30 nodes.
To mimic the phenomenon that individuals in a network
tend to form communities (Newman, 2006), we divide these
nodes evenly into K communities, K¼ 1, 2, 3. The dimen-
sion of representation vectors for each node is set to 32,
with values 0:02� nþ 0:5� q, q ¼ 1, 2, :::,K: The first
18,000 events are used as the training set and the remaining
2000 events are used as the testing set. The evaluation met-
ric is the proportion of successful prediction of the top r
results: if the true sender or receiver of the next event falls
in the top r candidates of the prediction, then this predic-
tion is treated as a success.

We compare the above evaluation metric of the proposed
network representation method with the following methods:

1. HTNE (Zuo et al., 2018): Its model formulation is simi-
lar to our proposed model, but it focuses on the neigh-
borhood formation mechanism instead of transmission
of influence. its CIF is

k̂vjuðtÞ ¼ lu, v þ
X
th<t

ah, vjðt � thÞ: (18)

2. DeepWalk (Perozzi et al., 2014): It is a network repre-
sentation learning method for static networks, which
conducts random walks on the network to get contexts
and uses word2vec (Mikolov et al., 2013) to learn node
representation vectors.

3. node2vec(Grover and Leskovec, 2016): It is also a net-
work representation learning method for static net-
works. It is similar to DeepWalk, but it better balances
the depth-first search and breadth-first search in the
path sampling step.

In the last two methods for static network representation
learning, the prediction is conducted only on the distance
between learned node representation vectors, also choose
the top r candidates to evaluate the performance. Moreover,
the true node representation vectors are also evaluated
(called True method in the experiment) as the upper bound
of a successful prediction rate in this experiment.

Table 3. Experiment result of next receiver prediction when the current node
is the sender.

Community Number K Method r¼ 2 r¼ 3 r¼ 5

1 True 0.2220 0.3145 0.4945
TPPN 0.2040 0.3035 0.4815
HTNE 0.1455 0.2130 0.3850
DeepWalk 0.0980 0.1620 0.3015
node2vec 0.0580 0.0815 0.1535

2 True 0.2215 0.3285 0.5375
TPPN 0.2015 0.2870 0.5020
HTNE 0.1530 0.2225 0.3285
DeepWalk 0.1360 0.2070 0.3395
node2vec 0.1755 0.2655 0.4195

3 True 0.2855 0.4220 0.6555
TPPN 0.2410 0.3590 0.5790
HTNE 0.2465 0.3590 0.5745
DeepWalk 0.2040 0.3065 0.5550
node2vec 0.2210 0.3510 0.5790

Table 4. Experimental result of next sender prediction when the current node
is the receiver.

Community Number K Method r¼ 2 r¼ 3 r¼ 5

1 True 0.1970 0.3145 0.3320
TPPN 0.1840 0.2685 0.4545
HTNE 0.1810 0.2665 0.4475
DeepWalk 0.0905 0.1480 0.2905
node2vec 0.0570 0.0775 0.1495

2 True 0.2105 0.3285 0.4055
TPPN 0.1970 0.3075 0.4660
HTNE 0.1970 0.3060 0.4535
DeepWalk 0.1290 0.2035 0.3525
node2vec 0.1595 0.2415 0.4090

3 True 0.2640 0.4220 0.5065
TPPN 0.2325 0.3510 0.5775
HTNE 0.2220 0.3325 0.5540
DeepWalk 0.2105 0.3335 0.5555
node2vec 0.2120 0.3305 0.5665
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The experiment result of the next receiver prediction
when the current node is the sender is shown in Table 3.
From this result, we can find that the True method performs
best as expected, and our proposed TPPN method outper-
forms the other three methods when r¼ 2, 3, 5, and per-
forms close to the True method. Moreover, the difference
between TPPN and True becomes larger as the number of
communities increases. Static network representation learn-
ing methods perform better when the number of commun-
ities is larger, but it is still not as good as those methods
based on temporal point process.

The experimental result of the next sender prediction
when the current node is the receiver is shown in Table 4.
It is shown that in the next-sender prediction task, neither
the real node representation vectors nor these network rep-
resentation learning methods perform as well as the task of
the next receiver task. This systematic difference comes
from the form of the CIF, which incorporates the influence
of the sender of an event on the receiver more than the
other way round. Moreover, the proposed TPPN method
performs better than the remaining network representation
learning methods and performs even better than the True
method when r¼ 5. Therefore, the proposed TPPN gives a
satisfactory performance in the next-event prediction task.

5.1.2. Evaluation of CIF
The key component of the proposed network event model is
the CIF for each possible sender–receiver pair on the net-
work. Ideally, the network representation learning algorithm
should output node representation vectors that can well

restore the true CIF that generates the events on the net-
work. To evaluate the restoration performance of the pro-
posed network representation learning method, we compare
the restored CIF with the proposed method with the true
conditional intensity on the network in this simula-
tion experiment.

We simulate 20,000 events using Algorithm 2, with the
end time, noted as T, and conduct the network representa-
tion learning algorithm on the first 18,000 events. We con-
sider the case where the number of communities K is 1, 2,
3, respectively, and the true node representation vectors are
set to be of d¼ 32 dimensions, values are set to 0:02� nþ
0:5� q, where n ¼ 1, 2, :::, d, q ¼ 1, 2, :::,K: Figure 3 shows
the visualization result of the first two principal components
from true node representation vectors and learned node rep-
resentation vectors on the network. We can see from these
figures that the proposed network representation learning
method can cluster the nodes from the same community
together, thus is able to conduct node clustering tasks
through network representation learning in real applications
on networks.

Furthermore, the CIF in (2) reflects the occurence rate of
the next interaction event from node u to node v, and can
be compared with the true CIF to evaluate the performance
of the learning algorithm. Figure 4 and Figure 5 show the
learned matrix of CIFs, true matrix of the CIF and the dif-
ference between these two for each node pair when the
number of communities is K¼ 1 and K¼ 2 at time t ¼
0:5T: Generally, the restoration performance of the pro-
posed method performs well for the CIF. When K¼ 1, the

Figure 3. When K¼ 1, 2, 3 respectively, the principal components of the true node vectors and learned representation vectors.
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performance looks worse on the intensity between marginal
nodes than that between the central nodes; when K¼ 2, the
intensity between nodes inside the same community is
restored better than that between nodes across communities.

For the case with K¼ 1, we manually add a shift over the
network at time T, adding an extra value following a
Nð0:02, 0:02Þ normal distribution for each dimension of the
last five nodes. According to the shifted node representation
vectors, we further simulate events until the latest event occurs
after t ¼ 2T: Figure 6 and Figure 7 show when t ¼ 1:1T, t ¼
1:5T, t ¼ 1:9T, the matrix of the CIF learned with the
unchanged events and that calculated from the unchanged
true node representation vectors. It is shown that when the
network changes, the learned CIF will significantly deviate
from that of the unchanged network, which motivates the idea
of monitoring networks through these CIFs.

5.2. Experiment on real-world data

The effectiveness of the proposed model and network repre-
sentation learning method is validated on two real-world
datasets: the DBLP co-author network and the Enron email
network. Each node in the DBLP co-author network repre-
sents an author, and each event is a co-author publication.
There are 28,085 nodes classified into 10 classes according
to the author’s research direction and 236,894 events. The
Enron email dataset contains 184 email addresses, where
each email address acts as a node, and 38,121 emails among
these email addresses, where each email is an event. Two
tasks are conducted in our experiment: node classification
and link prediction. These two tasks are two classic tasks for

the evaluation of network representation learning methods.
We also show a case study of network monitoring on the
Enron email network.

5.2.1. Node classification
Node classification is a classic task on networks and has a
variety of real applications. The purpose of this task is to
identify the classes of unknown nodes based on the network
structure and/or their attributes. The proposed TPPN
method is compared with DeepWalk and HTNE on the
DBLP co-author network dataset. The evaluation metrics are
Macro-F1 and Micro-F1, which are both integration of pre-
cision and recall1. Macro-F1 treats different classes equally
without emphasis on sample size, and Micro-F1 balances the
importance of different classes according to the sample sizes
for each class. Usually, these two metrics are both evaluated
for multi-class classification tasks.

We split the data into a training set and a testing set, and
vary the proportion of the training data from 10% to 90%,
and set the dimension of learned representation vectors as
d¼ 128 for this experiment, as do as most network embed-
ding works. The experimental results for the three methods
on the node classification task are shown in Table 5.
According to the result, the proposed TPPN method
achieves a better score than the other two methods in both
Macro-F1 and Micro-F1. The HTNE method is better than
the static network representation learning method
DeepWalk for the incorporation of the formation process of
neighbors on the network. Moreover, the Micro-F1 scores
for these methods are generally higher than the Macro-F1
scores, which indicates that the network representation

Figure 4. When K¼ 1, the comparison between the learned conditional intensity function and the true CIF.

Figure 5. When K¼ 2, the comparison between the learned CIF and the true CIF.
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learning methods can well take care of the imbalance of dif-
ferent node classes.

5.2.2. Link prediction
Link prediction (L€u and Zhou, 2011) is a task that identifies
whether there is a link between two specific nodes on the
network. We adopt the Enron email dataset to evaluate this
task. The methods compared include DeepWalk, node2vec,
LINE (Tang et al., 2015), HTNE, and the proposed TPPN
method. For each of these methods, we use 70% of all the
emails as positive samples, and randomly sample pairs of
nodes without links in a 1:1 ratio as negative samples. A
support vector machine model is used to train a classifier
for link identification, and the performance of the model is
tested on the remaining 30% of links as well as the negative
samples in a 1:1 ratio. The learned dimension is also set as
d¼ 128. We record the accuracy and Macro-F1 of the link

prediction task for the compared methods. Table 6 shows
the link prediction performance of the experiment. It is
shown that the proposed TPPN method outperforms the
other methods in both accuracy and Macro-F1.

5.3. Monitoring the Enron email network

As is discussed in Section 4, the estimated CIFs for all the
possible node pairs on the network can be used to establish
a monitoring scheme for interaction event networks. In the
following, we conduct a case study on the Enron email net-
work with this monitoring scheme.

The Enron email corpus contains all the email communi-
cations among the staff in Enron Corporation from 1998 to
2002. A scandal was publicized in October 2001, which
eventually led to the bankruptcy of Enron Corporation. This
issue was investigated by the Federal Regulatory
Commission of the United States of America, who released
this email dataset. The dynamics of the email network in
Enron should show the emergence of illegal activities and
the downward health status of the company.

We apply the inference algorithm to this email dataset
including 38,121 emails among 184 unique email addresses

Figure 6. The learned CIF matrix on changed network, at t ¼ 1:1T , t ¼ 1:5T , t ¼ 1:9T , respectively.

Figure 7. The true CIF matrix on changed network, at t ¼ 1:1T , t ¼ 1:5T , t ¼ 1:9T , respectively.

Table 5. Node classification result on the DBLP dataset.

Method DeepWalk HTNE TPPN

Metric (%) Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

10 0.6226 0.6309 0.6530 0.6182 0.6576 0.6712
20 0.6434 0.6487 0.6371 0.6633 0.6722 0.6806
30 0.6497 0.6519 0.6466 0.6683 0.6773 0.6842
40 0.6519 0.6530 0.6503 0.6711 0.6827 0.6877
50 0.6529 0.6549 0.6533 0.6719 0.6827 0.6870
60 0.6515 0.6522 0.6581 0.6742 0.6819 0.6859
70 0.6482 0.6501 0.6514 0.6708 0.6779 0.6847
80 0.6491 0.6423 0.6491 0.6705 0.6730 0.6835
90 0.6199 0.6401 0.6402 0.6671 0.6788 0.6867

Table 6. Link prediction result on the Enron email dataset.

Metric DeepWalk node2vec LINE HTNE TTPN

Accuracy 0.7086 0.7944 0.8587 0.8227 0.8753
Macro-F1 0.6830 0.7884 0.8587 0.8227 0.8751
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and obtain the pairwise CIFs for all the nodes. The email net-
work was monitored with

P
i6¼j kij and maxi 6¼jkij, and these

two monitoring metrics are calculated for each time stamp
when a new email is sent. The monitoring results are shown
in Figure 8. We normalize the period into the range of zero to
one. It is shown in Figure 8(a) that with the fraud activities of
the company, the emails are sent more and more frequently
over the whole network. After the time when the scandal was
publicized, the intensity of activities on the network sharply
increases and reaches a peak. Moreover, the max intensity of
interaction events over the network shown in Figure 8(b) rises
quickly in the beginning, reaches a peak gradually, and subse-
quently remains stable. This experiment shows the different
features for the two proposed monitoring metrics: the sum of
CIFs emphasizes more on the global status over the whole net-
work, and the maximum value of CIFs can well characterize
the activities between the most intense pair of nodes.

6. Conclusion

In this article, we propose a network model for interaction
events based on the temporal point process, which explicitly
models the influence of historical events on later events. The
rate of interaction events for a sender–receiver interaction
node pair is characterized by the CIF of a temporal point
process, which is composed of external transitional influence
and repeated pattern influence and the representation vec-
tors for related nodes. We also propose a network represen-
tation learning algorithm to learn the node representation
vectors on such networks. Based on the pairwise rate of

interaction events on the network, network monitoring
strategies are also introduced based on a summarization
operation on these pairwise rates of the network. Through
simulation experiments and experiments on real-world data,
we demonstrate the effectiveness of the proposed model and
representation learning algorithm.

Network representation learning is a popular research topic
nowadays. Researchers find different approaches to preserve
the network structure and other useful information with node
representation vectors on the network. Incorporating the
dynamics of networks in network representation learning
remains a challenging problem. This article explores a possible
approach to model the dynamics of networks by modeling the
interaction event sequences. There are also several directions
for future research. First, richer information on the network
can be further utilized for better network representation learn-
ing, including node attributes, edge attributes, and higher-order
dynamics on the network. Second, more efficient tools for net-
work monitoring can be developed based on the rates of inter-
action events targeting specific types of changes. Furthermore,
the idea of pre-training models and transfer learning can also
be adopted for this field, such as initializing the node represen-
tation vectors with a pre-trained model.
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